Source code for lenstronomy.LensModel.Profiles.curved_arc_tan_diff

import numpy as np
from lenstronomy.LensModel.Profiles.sie import SIE
from lenstronomy.LensModel.Profiles.convergence import Convergence
from lenstronomy.LensModel.Profiles.base_profile import LensProfileBase
from lenstronomy.Util import param_util

__all__ = ["CurvedArcTanDiff"]


[docs] class CurvedArcTanDiff(LensProfileBase): """Curved arc model with an additional non-zero tangential stretch differential in tangential direction component. Observables are: - curvature radius (basically bending relative to the center of the profile) - radial stretch (plus sign) thickness of arc with parity (more generalized than the power-law slope) - tangential stretch (plus sign). Infinity means at critical curve - direction of curvature - position of arc Requirements: - Should work with other perturbative models without breaking its meaning (say when adding additional shear terms) - Must best reflect the observables in lensing - minimal covariances between the parameters, intuitive parameterization. """ param_names = [ "tangential_stretch", "radial_stretch", "curvature", "dtan_dtan", "direction", "center_x", "center_y", ] lower_limit_default = { "tangential_stretch": -100, "radial_stretch": -5, "curvature": 0.000001, "dtan_dtan": -10, "direction": -np.pi, "center_x": -100, "center_y": -100, } upper_limit_default = { "tangential_stretch": 100, "radial_stretch": 5, "curvature": 100, "dtan_dtan": 10, "direction": np.pi, "center_x": 100, "center_y": 100, }
[docs] def __init__(self): self._sie = SIE(NIE=True) self._mst = Convergence() super(CurvedArcTanDiff, self).__init__()
[docs] @staticmethod def stretch2sie_mst( tangential_stretch, radial_stretch, curvature, dtan_dtan, direction, center_x, center_y, ): """ :param tangential_stretch: float, stretch of intrinsic source in tangential direction :param radial_stretch: float, stretch of intrinsic source in radial direction :param curvature: 1/curvature radius :param dtan_dtan: d(tangential_stretch) / d(tangential direction) / tangential stretch :param direction: float, angle in radian :param center_x: center of source in image plane :param center_y: center of source in image plane :return: parameters in terms of a spherical SIS + MST resulting in the same observables """ center_x_sis, center_y_sis = center_deflector( curvature, direction, center_x, center_y ) r_curvature = 1.0 / curvature lambda_mst = 1.0 / radial_stretch kappa_ext = 1 - lambda_mst theta_E = r_curvature * (1.0 - radial_stretch / tangential_stretch) # analytic relation (see Birrer 2021) dlambda_tan_dr = ( tangential_stretch / r_curvature * (1 - tangential_stretch / radial_stretch) ) # translate tangential eigenvalue gradient in lens ellipticity dtan_dtan_ = dtan_dtan * tangential_stretch epsilon = np.abs(dtan_dtan_ / dlambda_tan_dr) # bound epsilon by (-1, 1) epsilon = np.minimum(epsilon, 0.99999) q = np.sqrt((1 - epsilon) / (1 + epsilon)) if dtan_dtan_ < 0: phi = direction - np.pi / 4 else: phi = direction + np.pi / 4 e1_sie, e2_sie = param_util.phi_q2_ellipticity(phi, q) # ellipticity adopted Einstein radius to match local tangential and radial stretch factor = np.sqrt(1 + q**2) / np.sqrt(2 * q) theta_E_sie = theta_E * factor return theta_E_sie, e1_sie, e2_sie, kappa_ext, center_x_sis, center_y_sis
[docs] def function( self, x, y, tangential_stretch, radial_stretch, curvature, dtan_dtan, direction, center_x, center_y, ): """ ATTENTION: there may not be a global lensing potential! :param x: :param y: :param tangential_stretch: float, stretch of intrinsic source in tangential direction :param radial_stretch: float, stretch of intrinsic source in radial direction :param curvature: 1/curvature radius :param direction: float, angle in radian :param dtan_dtan: d(tangential_stretch) / d(tangential direction) / tangential stretch :param center_x: center of source in image plane :param center_y: center of source in image plane :return: """ lambda_mst = 1.0 / radial_stretch ( theta_E_sie, e1_sie, e2_sie, kappa_ext, center_x_sis, center_y_sis, ) = self.stretch2sie_mst( tangential_stretch, radial_stretch, curvature, dtan_dtan, direction, center_x, center_y, ) f_sis = self._sie.function( x, y, theta_E_sie, e1_sie, e2_sie, center_x_sis, center_y_sis ) # - self._sis.function(center_x, center_y, theta_E, center_x_sis, center_y_sis) alpha_x, alpha_y = self._sie.derivatives( center_x, center_y, theta_E_sie, e1_sie, e2_sie, center_x_sis, center_y_sis ) f_sis_0 = alpha_x * (x - center_x) + alpha_y * (y - center_y) f_mst = self._mst.function(x, y, kappa_ext, ra_0=center_x, dec_0=center_y) return lambda_mst * (f_sis - f_sis_0) + f_mst
[docs] def derivatives( self, x, y, tangential_stretch, radial_stretch, curvature, dtan_dtan, direction, center_x, center_y, ): """ :param x: :param y: :param tangential_stretch: float, stretch of intrinsic source in tangential direction :param radial_stretch: float, stretch of intrinsic source in radial direction :param curvature: 1/curvature radius :param direction: float, angle in radian :param dtan_dtan: d(tangential_stretch) / d(tangential direction) / tangential stretch :param center_x: center of source in image plane :param center_y: center of source in image plane :return: """ lambda_mst = 1.0 / radial_stretch ( theta_E_sie, e1_sie, e2_sie, kappa_ext, center_x_sis, center_y_sis, ) = self.stretch2sie_mst( tangential_stretch, radial_stretch, curvature, dtan_dtan, direction, center_x, center_y, ) f_x_sis, f_y_sis = self._sie.derivatives( x, y, theta_E_sie, e1_sie, e2_sie, center_x_sis, center_y_sis ) f_x0, f_y0 = self._sie.derivatives( center_x, center_y, theta_E_sie, e1_sie, e2_sie, center_x_sis, center_y_sis ) f_x_mst, f_y_mst = self._mst.derivatives( x, y, kappa_ext, ra_0=center_x, dec_0=center_y ) f_x = lambda_mst * (f_x_sis - f_x0) + f_x_mst f_y = lambda_mst * (f_y_sis - f_y0) + f_y_mst return f_x, f_y
[docs] def hessian( self, x, y, tangential_stretch, radial_stretch, curvature, dtan_dtan, direction, center_x, center_y, ): """ :param x: :param y: :param tangential_stretch: float, stretch of intrinsic source in tangential direction :param radial_stretch: float, stretch of intrinsic source in radial direction :param curvature: 1/curvature radius :param direction: float, angle in radian :param dtan_dtan: d(tangential_stretch) / d(tangential direction) / tangential stretch :param center_x: center of source in image plane :param center_y: center of source in image plane :return: """ lambda_mst = 1.0 / radial_stretch ( theta_E_sie, e1_sie, e2_sie, kappa_ext, center_x_sis, center_y_sis, ) = self.stretch2sie_mst( tangential_stretch, radial_stretch, curvature, dtan_dtan, direction, center_x, center_y, ) f_xx_sis, f_xy_sis, f_yx_sis, f_yy_sis = self._sie.hessian( x, y, theta_E_sie, e1_sie, e2_sie, center_x_sis, center_y_sis ) f_xx_mst, f_xy_mst, f_yx_mst, f_yy_mst = self._mst.hessian( x, y, kappa_ext, ra_0=center_x, dec_0=center_y ) return ( lambda_mst * f_xx_sis + f_xx_mst, lambda_mst * f_xy_sis + f_xy_mst, lambda_mst * f_yx_sis + f_yx_mst, lambda_mst * f_yy_sis + f_yy_mst, )
def center_deflector(curvature, direction, center_x, center_y): """ :param curvature: 1/curvature radius :param direction: float, angle in radian :param center_x: center of source in image plane :param center_y: center of source in image plane :return: center_sis_x, center_sis_y """ center_x_sis = center_x - np.cos(direction) / curvature center_y_sis = center_y - np.sin(direction) / curvature return center_x_sis, center_y_sis